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can be written as 

Ux= 
r(l+cos/3)/2 

(sinj8)/v5 
l(l-cos/5)/2 

- (sin/3)/V2 
COSjft 

(sin/3)/v2 

(l-cos/3)/2 1 
- (sin/3)/V2 
(l+cos/3)/2j 

Another Lorentz transformation in the new z direction 
to the rest frame of [1] does not change the helicity 
state. 

The justification of the unphysical transformation can 
be seen in two ways. From dispersion theory, cos/3 is 
the same as the cosine of the angle in the / channel. If, 
on the other hand, we construct the field function of [3] 
and impose the Lorentz condition even in the case that 
[3] is virtual, to eliminate the spin-zero component, we 
obtain the same answer for the transformation between 
the field functions in two vertices. 
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The generalized Pauli principle is combined with the assumption of SU3 symmetry to yield relations be
tween hyperon-nucleon and nucleon-nucleon scattering amplitudes for the 1S0 and 3Si states. 

ALTHOUGH many applications of the "eightfold 
way" version of unitary symmetry1 have been 

made to two-body meson baryon reactions, relatively 
little attention has been paid to baryon-baryon sys
tems.2 In this note we combine the assumption of SU3 
symmetry with the generalized Pauli principle to deduce 
relations between hyperon-nucleon and nucleon-nucleon 
amplitudes.3 Particular attention is given to those reac
tions which are most readily accessible to experiments, 
namely, 
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1Y. Ne'eman, Nucl. Phys. 26, 222 (1961); M. Gell-Mann, 

California Institute of Technology Report No. CTSL-20 (1961) 
(unpublished); and Phys. Rev. 125, 1067 (1962). 

2 R. J. Oakes, Phys. Rev. 131, 2239 (1963); I. Gerstein (pre
print) . 

3 For an example of the combination of generalized Bose 
symmetry with SU3 invariance as applied to mesons, see C. A. 
Levinson, H. J. Lipkin and S. Meshkov, Phys. Letters 7,81 (1963). 

%-+p->A+n T(ZrA) 

A+p-±A+p T(AA) 

A + £ - > 2 + + ^ r(AS+) 

K+p-^^+p r(AS°) 

In general, the wave function of two particles, each 
of which belongs to an octet representation of SU3, will 
be a linear combination of irreducible wave functions 
belonging to the representations [27], [8S]_, [ 8 J , [10], 
[10], and [1]. (Note that the symbol [10] denotes a 
continuous bar over the "one" and "zero.") The gen
eralized Pauli principle applied to states containing two 
baryons which belong to the Jp= 1/2+ baryon octet, 
allows a reduction in the number of independent, re
duced SU3 matrix elements needed to describe the 
reactions of Eq. (1). 

The total wave function for two baryons must be anti
symmetric under the interchange of all of the coordi
nates of the two particles. In the two nucleon problem 
it is customary to split the total wave function into 
several parts, one describing the isospin and the other 
the spin-space part. However, if SU3 invariance is 
assumed, then the dichotomy is into an SU3 part and a 
spin-space part. Correspondingly, when two baryons 
are in an antisymmetric spin-space state (lSo, ZP 0,1,2, * * * 
in the notation 2S+1Lj), their SU3 wave function 
£(BiB2+B2Bi)/^/22 must be symmetric. Bx and B2 

represent the SU3 functions for baryons 1 and 2, 
respectively. Similarly, for symmetric spin-space states 
(3Si, lPu • • •) the SU3 wave function [ ( ^ i J ^ - ^ O / V l ] 
is antisymmetric. In general, the SU3 symmetric states 
belong to the representations [27], [8S], and [1], al
though in the reactions of Eq. (1) the singlet [1] state 
does not occur. The antisymmetric SU3 states are con
tained in [8 J , [10], and [10]. 

Assuming strict SU3 invariance of the strong inter-
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TABLE I. Matrix elements for the reactions of Eq. (1) expressed in terms of SU3 invariant reduced matrix elements for ^o and 3Si 
incident or final states. The symbols \BiB2) are abbreviations for | (BiB2-\-B2Bi)/^) and \BiB2—B$B i)/y/2). 

'So 3Si 

a. (pp\T»\pp) 
b. (np\T°\np) 
c. (2+p\T°\2+p) 
d. <?rp\T°\irp) 
e. QPn\T°\irp) 
f. {An\T°\2-p) 
g. (Ap\T°\Ap) 
h. (2+n\T°\Ap) 
i. &°p\T°\Ap) 

2T2 7 

T2i 
T21 

( i /5)(2r 2 7+3r 8 a) 
(3/5v2)(r2 7-r8 <) 
(^/5vi)(r27-r83) 
(i/io)(9r27+r8s) 
(v5/5v2)(r27-r8s) 
(v3/io)(r27-r8s) 

{np IT11 np) 
&+p\T^p) 
(2-p\Ti\2-p) 
&Qn\Tl\?-p) 
(An\Tl\V-p) 
{Ap\T^\Ap) 
&+n\Tl\Ap) 
<&p\TL\Lp) 

(i/3)(7Vf-r10-r8a) 
(i/3v2)(rio-2r10+r8o) 
(l/V6)(~TTo+r8o) 
d/2)(rTo+r8a) 
(i/V6)(rTo-r8o) 
(i/2v3)(-rio+r8a) 

actions, the reaction amplitudes of Eq. (1) can be ex
pressed as linear combinations of two independent 
reduced amplitudes, T2i, T8a in the ^So state, and three 
reduced amplitudes T8a, Tio, Tin, in the zSi state. This 
is a great simplification compared to that which prevails 
for reactions like meson+baryon-^meson+baryon. 4 ' 5 

For arbitrary angular momenta, the five reduced ampli
tudes listed above must be augmented by another inde
pendent amplitude, Ts8a, that couples a two baryon 
[8 a ] state to an £8S] state, or vice versa. This mixing 
amplitude can occur only for states in which J=L 
(J and L are the total and orbital angular momentum 
quantum numbers, respectively). In such states, / and 
parity can be conserved in a transition of the type 
[ 8 J <-> p a ] , for example: [8«] IPX «-> [8S] 3Pi. Transi
tions of this type are forbidden for n—p scattering by 
charge independence when the generalized Pauli prin
ciple is invoked. However, these transitions are not 
forbidden by SU3 invariance for hyperon-nucleon re
actions, without an additional postulate such as R 
invariance, which apparently does not hold for strong 
reactions.4 Because of the effect of a possible nonvanish-
ing Ts,a amplitude we restrict our discussion to S waves. 

The Clebsch-Gordan coefficients that couple sym
metric and antisymmetric two-baryon states to SU3 

invariant states have been listed in the literature.6 

Table I lists the amplitudes of reactions (1) in terms of 
the SU3 reduced matrix elements, for both xSo and 3$i 
states. I t is convenient to adopt the following notation: 
T°(BiB2) and T1(BiB2) are the transition matrix 
elements for reactions of the form Bi~\-p —>B2+p 
or Bi+p—*B2+n in the ^ o or 3Si initial state, 
respectively. 

Table I yields the following equalities for the ^ o 

4 C. A. Levinson, H. J. Lipkin, and S. Meshkov, Phys. Letters 
1, 44 (1962). 

6 P. G. O. Freund, H. Ruegg, D. Speiser, and A. Morales, Nuovo 
Cimento 25, 307 (1962). 

6 J. J. deSwart, Rev. Mod. Phys. 35,916 (1963); R. E. Behrends, 
J. Dreitlein, C. Fronsdal, and B. W. Lee, Rev. Mod. Phys. 34, 1 
(1962). 

state: 

(1/4) I T°(pp) \2=\ T°(nn) 12= | ro(2+2+)|2 (2) 

I r°(s-s°) 12=31 r°(s-A) 12- 31 r°(As+) |2 

= 6|r°(AS°)|2 (3) 
and 

| r°M|2+(i/5) |r°(s-2;-) |2 

= (6/5) 1 T°(AA)|2+ (1/3) 1 r°(s-s0)|2. (4) 

For the zSi state 

I r(2-A) I2-1 r(As+) |2=2| THAS0) I2 (5) 
and 

3[|r1(2-s-)|2+|r l(s-2°)|2] 
= 2|rl(AA)|2+|rl(2+2+)|2. (6) 

In addition, the relations in Table I imply many 
inequalities, such as 

3|r(s-A)|2>|r1(^)l2-J^1(AA)|2 , (7) 

3\T1&~A)\2>2\T1(nn)\2+2\T1(AA)\2 

-4|T1(^)||r1(AA)| , (8) 

3|r1(S-A)|2<2|T1(^)|2+2|r1(AA)|2 

+4|rl(»»)||rl(AA)|. (9) 

Equation (2) is valid for all antisymmetric spin-space 
states (^o, 3i\i ,2,. . .) since the pp, nn, and 2 + 2 + ampli
tudes are not coupled to either the [8S~] or £8a] 
representation. 

The difficult question remains as to what relation, if 
any, Eqs. (2)-(9) have with experimental S-wave cross 
sections, since SU3 symmetry is broken. I t clearly makes 
no sense to compare the cross sections of endothermic 
reactions, such as A+p —>2++n, with the exothermic 
reactions like 2~+p —» A+n at a kinetic energy where 
the former is not energetically allowed. In the 5-wave 
dominant region, one might hope to compare the first 
seven reactions of Eq. (1) by choosing the same kinetic 
energy in the incident state (or what is almost but not 
quite equivalent, the same momentum in the incident 
state). Since these reactions are either elastic or exo
thermic, this criterion has the virtue that all of the 
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channels are simultaneously open. An analogous prob
lem for a different class of endothermic reactions was 
analyzed successfully by Meshkov, Snow, and Yodh,7 

who compared different endothermic reactions at the 
same outgoing kinetic energy. 

In the low-energy region, the rather large S°—A mass 
difference may cause large deviations from the pure SU3 
predictions, for reactions (le) and (If). For example, if 
tensor forces are important8 for an incident ZS\ (Hrp) 
state, the outgoing ZD\ state of iPn will be strongly sup
pressed by centrifugal barrier effects relative to the 
outgoing ZD\ state of An.8 

A particularly interesting comparison may be made 
between the cross sections for the processes n+p —> n+p 
and 2,++p —->2++^. Their ^o cross sections both de
pend only on T27 and should be the same. However, the 
35i cross section for the X+p system depends on Z10, 
whereas the 3Si system for the n+p system corresponds 
to the deuteron (Tio). Since 

crtot(2+2+) = (l/4)<70C£+2+)+ (3/4V (2+2+) (10) 

and 

<r°(/m)==(70(2+2+), (11) 

SU3 invariance predicts that 

crtot(2+2+)> (1/4V(»»). (12) 
7 S. Meshkov, G. A. Snow, and G. B. Yodh, Phys. Rev. Letters 

12, 87 (1964). 
8 D. E. Neville, Phys. Rev. 130, 327 (1963); J. J. deSwart and 

C. K. Iddings, ibid. 130, 319 (1963). 

THE large angle p-p elastic-scattering cross section1 

shows a strong dependence on both energy and 
momentum transfer. Orear2 has pointed out that this 

* This work supported by the U. S. Atomic Energy Commission. 
f On leave of absence from the Department of Physics, Osaka 

University, Osaka, Japan. 
1 G. Cocconi, V. T. Cocconi, A. D. Krisch, J. Orear, R. Rubin

stein, D. B. Scarl, W. F. Baker, E. W. Jenkins, and A. L. Read, 
Phys. Rev. Letters 11, 499 (1963); W. F. Baker, E. W. Jenkins, 
A. L. Read, G. Cocconi, V. T. Cocconi, A. D. Krisch, J. Orear, 
R. Rubinstein, D. R. Scarl, and B. T. Ulrich, Phys. Rev. Letters 
12, 132 (1964). 

2 J. Orear, Phys. Rev. Letters 12, 112 (1964). 

The amount by which (rtot(S
+S+) is larger than a0(nn) 

is a direct measure of Ti0. A difficulty with this analysis 
arises if we consider the hyperon-nucleon potential as 
arising from meson exchange. The wide variation of the 
masses of the eight pseudoscalar mesons would imply 
substantial differences in the ranges of parts of the 
hyperon-nucleon potential compared to those of the 
nucleon-nucleon potential.9 This might produce devia
tions from the SU3 prediction given above. 

Despite all of the difficulties cited above, comparison 
of the reactions (1) with Eqs. (2)-(9) should prove use
ful because it may provide important clues about the 
effect of SU3 symmetry breaking on baryon-baryon 
dynamics. The S-wave cross sections for the reactions 
Eqs. (la)-(lg) are all observable, since K~ mesons 
stopping in a hydrogen bubble chamber provide an 
excellent source of low-energy 2+, S~, and A hyperons. 
The interactions of these hyperons with protons can be 
studied in the same pictures which record their 
production.10 

Note added in proof. Preliminary experimental results 
of R. Burnstein et al.10 yield o-tot(S

+,S+) = 200zhl00 mb 
at a 2+ average laboratory momentum of 160 MeV/c. 
The assumption of SU3 invariance combined with p-p 
scattering data predicts io-0(2+,2+) = 165 mb at this 
momentum, indicating that o-1(2+,2+) is small. 

9 A similar comment has been made by R. H. Dalitz, Proceedings 
of the Athens Topical Conference, 1963 (unpublished). 

10 R. Burnstein, T. B. Day, B. Kehoe, B. Sechi-Zorn, and G. A. 
Snow, Bull. Am. Phys. Soc. 8, 515 (1963); and (to be published). 

strong dependence can be fitted by a single exponential 
in the transverse momentum. If this dependence holds 
to arbitrarily high energies, the scattering amplitude 
for a fixed angle must decrease for increasing energy as 
exp(—const s1/2), where s is the square of the center-of-
mass energy. At any rate it appears that the scattering 
amplitude for finite fixed angle is a rapidly decreasing 
function of s. 

The purpose of this note is to show that this rapid 
decrease of the scattering amplitude at finite angles 
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It is shown that if the analytically continued partial-wave amplitude is assumed to have I dependence 

a±(s,l)=£ Cm±(s)lm(l+Vm 

for Kl0(s) and finite n, the scattering amplitude is bounded by exp{ — const[lo(s) sin0(s)]*} at high energies. 
Here a+(s,l)[a-(s,l)2 is equal to ai(s) for even (odd) integer I. The most physical example of this dependence 
is that in which a central area of the scatterer becomes maximally absorptive. 


